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Complex Exponentials and Phasors  

Barry Dorr – Department of Electrical and Computer Engineering, San Diego State 
University. 

February 13, 2020 

This lecture is dedicated to fred harris (capitals omitted 
at his insistence) who taught this material with 

enthusiasm and skill to multiple generations of SDSU 
students for over 50 years. 

Motivation 
The purpose of this lecture is to reinforce your knowledge of complex 
exponentials so that you will thrive as a student and, more importantly, have the 
tools to continue learning throughout an exciting and interesting career. You may 
not fully grasp this lecture today. But it’s my hope that you will keep these notes 
and refer to them in the future. If you can’t find them, email me at 
bdorr@sdsu.edu and I’ll send you a copy. 
 
Introduction 
In a circuit, a sinewave is a voltage or current – NOT a complex (or imaginary) 
number. There are no “imaginary” numbers rattling around in circuits. The term 
“imaginary number” is simply misleading! The reality is that complex numbers 
(which have “imaginary” parts) are commonly used for circuit analysis. 

In EE 310 complex exponentials are used for AC steady state circuits. In your 
senior-level coursework, and when you work in industry, you will use complex 
exponentials to describe circuits, analog/digital filters, control systems 
communication signals, etc. Modern signal processing is built on a foundation of 
complex exponentials.  
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Figure 1 – Signal Processing Roadmap 

 
The Motivation – Circuits before 1900 
Engineers, physicists, and mathematicians knew that when a sinewave was fed to 
a circuit, the output was also a sinewave, but it was scaled in amplitude and 
shifted in phase. The amplitude scaling could be handled with a simple 
multiplicative constant, but phase complicated things. 
 

The differential equations describing inductors and capacitors, 𝑣𝑣𝐿𝐿(𝑡𝑡) = 𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

    

and 𝑖𝑖𝐶𝐶(𝑡𝑡) = 𝐶𝐶 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 , were well known, but differential equations had to be solved 

whenever a circuit was analyzed. General Electric had to electrify an entire 
country, and the linemen and technicians, and engineers in the field couldn’t 
solve differential equations. A better analysis technique was needed! 
 
The Euler Identities 
Since the Euler identities will be used throughout this lecture, they are presented 
here. 
 

𝑒𝑒𝑗𝑗𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) + 𝑗𝑗 ∙ 𝑐𝑐𝑖𝑖𝑠𝑠(𝜙𝜙) 
Equation 1 
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Equation 1 can be solved for the cosine or sine 
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) =
𝑒𝑒𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗

2  

Equation 2 

 

𝑐𝑐𝑖𝑖𝑠𝑠(𝜙𝜙) =
𝑒𝑒𝑗𝑗𝑗𝑗 − 𝑒𝑒−𝑗𝑗𝑗𝑗

2 ∙ 𝑗𝑗  

Equation 3 

 
When referring to how signals are affected by circuits at a specific frequency, 𝜙𝜙 
will be a constant. For example, a signal can be shifted in phase 𝜙𝜙 radians by 
multiplying it by 𝑒𝑒𝑗𝑗𝑗𝑗. When referring to time-varying signals using complex 
numbers, 𝜙𝜙 will be a phase angle that increases linearly with time. For example,  
 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡) =
𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 + 𝑒𝑒−𝑗𝑗𝑗𝑗𝑑𝑑

2  

Equation 4 –  𝛚𝛚 is the angular frequency in radians per second. The first term in the numerator of the right-hand side has 
positive frequency and the second term has negative frequency. 

 
Graphical Representations of Complex Numbers 
  
Consider a cosine signal using the representation of Equation 4. 
 

𝑣𝑣(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙1) = 𝐴𝐴 ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗1) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗1)

2  

Equation 5 

 
The right-hand side of Equation 5 can be represented by two vectors as shown in 
Figure 2. The upper vector has positive frequency and rotates counter-clockwise, 
and the lower vector has negative frequency and rotates clockwise. It is seen that 



4 
Complex Exponentials – Barry Dorr - SDSU 

 
 

when these vectors are added, the imaginary parts cancel, leaving a signal that 
moves back and forth on the real axis. Note, however, that the phase angle 𝜙𝜙1 
causes a constant phase shift as shown in the figure. 
 
 
 

Re

Im
A/2

Value of 
cosine 

at t = 0.

cos(ωt + ϕ1 ) 
resides on the 
real axis

A

(a)

(b)
Peak positive 

value of cosine

ϕ1

-ϕ1

Peak negative 
value of cosine

The imaginary 
parts cancel 
and the real 

parts add
The dashed line 

shows the trajectory 
of the vectors as 

they rotate.

 
Figure 2 – (a) Cosine function represented as counter-rotating vectors from Equation 4.  (b) The vector sum is a real signal 

with peak value A. 
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The phase of the cosine in Equation 6 and Figure 2  can be shifted by multiplying 
the upper vector by 𝑒𝑒𝑗𝑗𝑗𝑗2   and the lower vector by 𝑒𝑒−𝑗𝑗𝑗𝑗2   as shown in Figure 3. 
Note that when the vectors are added, the sum is still on the real axis, but it is 
shifted in phase. 
 

𝑣𝑣(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙1 + 𝜙𝜙2) = 𝐴𝐴 ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗1+𝑗𝑗2) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗1+𝑗𝑗2)

2  

Equation 6 

Re

Im
A/2

Angle  ϕ2

Angle  -ϕ2

ϕ1

-ϕ1

Imaginary parts 
cancel. Real 

parts add.

The dashed line 
shows the trajectory 

of the vectors as 
they rotate.

 
Figure 3 - Counter-rotating vectors (dashed) are phase shifted by 𝝓𝝓𝟐𝟐. The vector sum resides on the real axis. 

Note that the upper vectors in the two figures above rotate counter-clockwise 
and therefore have positive frequency, and the lower vectors rotate clockwise 
and have negative frequency. The next section shows that when a sinewave is fed 
to a circuit, the circuit scales its magnitude and shifts its phase. When signals are 
represented as shown in Figure 2 and Figure 3, the circuit shifts the positive 
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frequency component by a constant phase angle and the negative frequency by 
the negative of the same phase angle. Furthermore, we note that amplitude 
scaling is an even function of frequency and phase shifting is an odd function of 
frequency, thus insuring that the output of a circuit, when fed with a real signal, 
will always be a real signal. 

Analyzing Circuits Using Complex Numbers 
We wish to find the output signal resulting from feeding the circuit of Figure 4 
with the signal 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙). The first step is to represent the input signal as a 
complex exponential as shown by the vectors at the top of the figure. 
 

𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙) = 𝐴𝐴 ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗)

2  

Equation 7 

At frequency 𝜔𝜔, the circuit in Figure 4 scales the magnitude of the two vectors by 
constant |𝐻𝐻|, and then shifts the positive frequency vector by phase angle 𝛾𝛾 and 
the negative frequency vector by −𝛾𝛾 as shown graphically at the bottom of the 
figure. As in the previous examples, the imaginary parts cancel and the circuit 
output is a scaled and phase shifted replica of the input sinewave. 
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Figure 4 – Solving a circuit problem using the Euler identities 

 
The resulting output signal is 
 

𝑣𝑣𝑜𝑜(𝑡𝑡) = 𝐴𝐴 ∙ |𝐻𝐻| ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗+𝛾𝛾) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗+𝛾𝛾)

2 = 𝐴𝐴 ∙ |𝐻𝐻| ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 𝛾𝛾) 

Equation 8 
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Figure 5 shows how the steps associated with circuit analysis can be streamlined. 
First, note that for any real signal, there are always two counter-rotating, 
conjugate vectors. Second, note that the circuit scales the amplitude of the two 
vectors by the same amount. Finally, it shifts the input vectors by conjugate phase 
angles. The strategy is to perform calculations on the upper vector only. 
 
As before, the input to the circuit is: 
 

𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) = 𝐴𝐴 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙) = 𝐴𝐴 ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗)

2  

Equation 9 

 
Removing the lower vector gives: 
 

𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) =
𝐴𝐴
2 ∙ 𝑒𝑒

𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗) 

Equation 10 

The circuit scales the magnitude of the input vector by constant |𝐻𝐻|, and shifts it  
by phase angle 𝛾𝛾. The result is: 

𝑣𝑣𝑜𝑜(𝑡𝑡) =
𝐴𝐴
2 ∙

|𝐻𝐻| ∙ 𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗+𝛾𝛾)  

Equation 11 

 
which is shown as the upper vector shown at the right of Figure 5. Finally, we 
restore the conjugate of the output vector, and use Euler’s identity to get the 
output signal which is real. 
 

𝑣𝑣𝑜𝑜(𝑡𝑡) = 𝐴𝐴 ∙ |𝐻𝐻| ∙
𝑒𝑒𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗+𝛾𝛾) + 𝑒𝑒−𝑗𝑗(𝑗𝑗𝑑𝑑+𝑗𝑗+𝛾𝛾)

2 = 𝐴𝐴 ∙ |𝐻𝐻| ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙 + 𝛾𝛾) 

Equation 12 
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Figure 5 - The process from Figure 4 can be streamlined, resulting in fewer steps 

 
Circuit Relationships for Sinusoidal Signals 
In the previous sections, it was found that complex exponentials can be used to 
manipulate magnitude scaling and phase shift caused by circuits. It was then 
found that we can streamline the process by using a complex exponential instead 
of a cosine or sine. Now the circuit blocks in Figure 4 and Figure 5 are replaced by 
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actual components. Analysis is simplified because the function 𝑒𝑒𝑗𝑗𝑗𝑗∙𝑑𝑑 has the 
desirable property that its derivative with respect to time is simply 𝑗𝑗𝜔𝜔 ∙ 𝑒𝑒𝑗𝑗𝑗𝑗∙𝑑𝑑. 
 
The current through an inductor is 𝑖𝑖𝐿𝐿(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑. The voltage across the inductor 
is: 
 

𝑣𝑣𝐿𝐿(𝑡𝑡) = 𝐿𝐿 ∙
𝑑𝑑𝑖𝑖
𝑑𝑑𝑡𝑡 = 𝐿𝐿 ∙ 𝑗𝑗𝜔𝜔 ∙ 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 = 𝑗𝑗𝜔𝜔𝐿𝐿 ∙ 𝑖𝑖𝐿𝐿(𝑡𝑡) 

Equation 13 – Voltage across an inductor when the current is a sinusoid 

 
And we can solve for the inductor impedance: 
 

𝑣𝑣𝐿𝐿(𝑡𝑡)
𝑖𝑖𝐿𝐿(𝑡𝑡) = 𝑍𝑍𝐿𝐿 = 𝑗𝑗𝜔𝜔𝐿𝐿 

Equation 14 – Impedance of an inductor 

 

The voltage across a capacitor is 𝑣𝑣𝐶𝐶(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑. The current through the capacitor 
is:  

𝑖𝑖𝐶𝐶(𝑡𝑡) = 𝐶𝐶 ∙
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡 = 𝐶𝐶 ∙ 𝑗𝑗𝜔𝜔 ∙ 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 = 𝑗𝑗𝜔𝜔𝐶𝐶 ∙ 𝑣𝑣𝐶𝐶(𝑡𝑡) 

Equation 15 – Current through a capacitor when the voltage is a sinusoid 

 
And the impedance of the capacitor is: 
 

𝑣𝑣𝐶𝐶(𝑡𝑡)
𝑖𝑖𝐶𝐶(𝑡𝑡) = 𝑍𝑍𝐶𝐶 =

1
𝑗𝑗𝜔𝜔𝐶𝐶 

Equation 16 – Impedance of a capacitor 

 
So, if the voltages and currents in circuits have the form 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑, the inductor 
impedance can be expressed as 𝑗𝑗𝜔𝜔𝐿𝐿 and the capacitor impedance as 1 𝑗𝑗𝜔𝜔𝐶𝐶⁄ . It’s 
an algebraic relationship – not a differential one!  
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If the input to a circuit is 𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) = 𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑, then the voltage and current signals, s, at 
any point, n, in the circuit can be expressed as: 
 

𝑐𝑐𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑑𝑑 ∙ 𝑒𝑒𝑗𝑗𝑗𝑗𝑛𝑛 = 𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) ∙ 𝐴𝐴𝑖𝑖 ∙ 𝑒𝑒𝑗𝑗𝑗𝑗𝑛𝑛  
Equation 17 

In other words, the effect of the circuit at any node, n is to multiply the complex 
input by the complex number 𝐴𝐴𝑖𝑖𝑒𝑒𝑗𝑗𝑗𝑗𝑛𝑛.  The ratio between the circuit output and 
input signals is called the transfer function, 𝐻𝐻(𝑗𝑗𝜔𝜔). 
 
Example – Circuit Excited by a Sinusoidal Signal 
Find voltage, vo(t), in the circuit below. 
 

R = 4.7 kΩ 

+
-

C
 =

 0
.0

1 
uF

+

-
 

Figure 6 - RC circuit excited by a sinusoidal voltage 

Removing the negative frequency vector from the input and using  𝜔𝜔 = 2𝜋𝜋 ∙ 3000 
for the angular frequency gives: 
 

𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) =
1
2 ∙ 3 ∙ 𝑒𝑒𝑗𝑗2𝜋𝜋∙3000𝑑𝑑 =

3
2 ∙ 𝑒𝑒

𝑗𝑗𝑗𝑗𝑑𝑑  

Equation 18 

The strategy is to compute the complex transfer function: 

𝐻𝐻(𝜔𝜔) =
𝑣𝑣𝑜𝑜(𝑡𝑡)
𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) 

Equation 19 – The transfer function is the frequency-dependent ratio of the output voltage to the input voltage. 

and then compute vo(t). 
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𝑣𝑣𝑜𝑜(𝑡𝑡) =
𝑣𝑣𝑜𝑜(𝑡𝑡)
𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) ∙ 𝑣𝑣𝑑𝑑𝑖𝑖

(𝑡𝑡) = 𝐻𝐻(𝜔𝜔) ∙ 𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) 

Equation 20 

 

R = 4.7 kΩ 

+
-

C 
= 

0.
01

 u
F +

-
 

Figure 7- RC circuit excited by a complex exponential voltage 

 

The transfer function, is computed using voltage division. 

𝐻𝐻 =
𝑣𝑣𝑜𝑜(𝑡𝑡)
𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) =

𝑍𝑍𝐶𝐶
𝑍𝑍𝑅𝑅 + 𝑍𝑍𝐶𝐶

 

Equation 21 

Where ZR and ZC are the impedances of the resistor and capacitor respectively. 
The impedance of the resistor is simply its resistance. The impedance of the 
capacitor is computed using Equation 16: 

𝑍𝑍𝐶𝐶 =
1
𝑗𝑗𝜔𝜔𝐶𝐶 

Equation 22 – Impedance of the capacitor 

Therefore the transfer function is: 

𝐻𝐻(𝑗𝑗𝜔𝜔) =
𝑍𝑍𝐶𝐶

𝑍𝑍𝐶𝐶 + 𝑍𝑍𝑅𝑅
=

1
𝑗𝑗𝜔𝜔𝐶𝐶

𝑅𝑅 + 1
𝑗𝑗𝜔𝜔𝐶𝐶

=
1

𝑗𝑗𝜔𝜔𝑅𝑅𝐶𝐶 + 1 

Equation 23 
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At 3000 Hz, the transfer function evaluates to:  

𝐻𝐻 =
1

𝑗𝑗 ∙ 2𝜋𝜋 ∙ 3000 ∙ 4700 ∙ 0.01 × 10−6 + 1 = 0.5603− 𝑗𝑗0.4964 

 
= 0.7485 ∙ 𝑒𝑒−𝑗𝑗∙0.725 

 
Equation 24 – Transfer function of the RC circuit, Vo/Vin. It is a complex constant at a given frequency. 

 
The positive frequency term (upper vector) of the output signal, vo(t), is: 
 

𝑣𝑣𝑜𝑜(𝑡𝑡) = 𝑣𝑣𝑑𝑑𝑖𝑖(𝑡𝑡) ∙ 𝐻𝐻 =
3
2 ∙ 𝑒𝑒

𝑗𝑗2𝜋𝜋∙3000𝑑𝑑 ∙ 0.7485 ∙ 𝑒𝑒−𝑗𝑗∙0.725 = 1.123 ∙ 𝑒𝑒𝑗𝑗(2𝜋𝜋∙3000𝑑𝑑−0.725)  

Equation 25 

If the negative frequency vector at the input had not been removed, the output 
would consist of the signal of Equation 25 plus its complex conjugate or 
 

𝑣𝑣(𝑡𝑡) = 1.123 ∙ 2 ∙
𝑒𝑒𝑗𝑗(2𝜋𝜋∙3000𝑑𝑑−0.725) + 𝑒𝑒−𝑗𝑗(2𝜋𝜋∙3000𝑑𝑑−0.725)

2  

Equation 26 

From Equation 4, the output voltage from Equation 26 can be represented as: 
 

𝑣𝑣(𝑡𝑡) = 2.245 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋 ∙ 3000 ∙ 𝑡𝑡 − 0.725) 
Equation 27 

And it is seen that the output is a scaled and phase shifted replica of the input. 
 
The Phasor Method 
The previous example showed that a sinusoidal input can be represented as a 
complex exponential and used as the input to a circuit. The complex input can 
then be multiplied by the circuit’s transfer function resulting in the complex 
exponential representing the circuit output. Now we adopt the familiar phasor 
notation. Since the frequency is the same for any signal in the circuit, phasor 
notation retains only the magnitude and phase angle. For example: 



14 
Complex Exponentials – Barry Dorr - SDSU 

 
 

 
𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙𝑟𝑟𝑟𝑟𝑑𝑑)    ↔     𝑽𝑽 =  𝑉𝑉𝑚𝑚�𝜙𝜙𝑑𝑑𝑑𝑑𝑑𝑑 

Equation 28 – The left side is the time domain; the right side is the phasor domain. Phasors are vectors and typically shown 
in boldface type. Phasor angles are typically shown in degrees. 

 

 It was also shown that a transfer function at a single frequency is simply a 
complex scaling constant. For example, in the previous example, the transfer 
function was the complex ratio of the output voltage to the input voltage. 
 

𝐻𝐻(𝑗𝑗𝜔𝜔) =
𝑍𝑍𝐶𝐶

𝑍𝑍𝐶𝐶 + 𝑍𝑍𝑅𝑅
=

1
𝑗𝑗𝜔𝜔𝐶𝐶

𝑅𝑅 + 1
𝑗𝑗𝜔𝜔𝐶𝐶

=
1

𝑗𝑗𝜔𝜔𝑅𝑅𝐶𝐶 + 1 

Equation 29 

In the previous example, the phasor representation of the input voltage, 𝑣𝑣(𝑡𝑡) =
𝑉𝑉𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙), is  
 

𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 0°) ↔ 𝑽𝑽𝒊𝒊𝒊𝒊 = 3⌊0° 𝑉𝑉      
Equation 30 

 
The phasor representation of the transfer function from Equation 29 is: 

𝑯𝑯 =
𝑽𝑽𝒐𝒐
𝑽𝑽𝒊𝒊𝒊𝒊

=
1

𝑗𝑗𝜔𝜔𝑅𝑅𝐶𝐶 + 1 =  0.7485⌊−41.53° ↔  0.7485 ∙ 𝑒𝑒−𝑗𝑗∙0.725 

Equation 31 - Note that phasor notation uses degrees 

 

The output of the circuit is found by multiplying the input by the transfer function. 
Since this involves multiplying exponentials, multiply the phasor magnitudes and 
add the phases to get the answer: 

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 =  𝑽𝑽𝒊𝒊𝒊𝒊 ∙ 𝑯𝑯 = 3⌊0° ∙ 0.7485⌊−41.54° = 2.246⌊−41.54° 𝑉𝑉     

Equation 32 
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Since Vout is a phasor, it is converted to a sinusoid by inspection using Equation 28. 
 

𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 =  𝑉𝑉𝑚𝑚⌊𝜙𝜙    ↔    𝑉𝑉𝑚𝑚 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙) = 2.246 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋 ∙ 3000𝑡𝑡 − 0.725) 
Equation 33 

 
Conclusion 
The good news: We can solve steady-state circuit problems with algebra and 
complex numbers. In the next several lectures, the phasor method will be 
introduced in more detail. Phasors been used for over a hundred years. 

The bad news: The phasor method is so streamlined, and we’ll use it so much, it’s 
easy to lose sight of where it came from. 

The future: You will encounter complex exponentials in your upper-division 
courses. Your instructors will expect you to have a working knowledge of them.  

Bottom line: Complex exponentials are nothing more than what was presented in 
this lecture. If you’re ever intimidated by complex exponentials, just refer to this 
lecture. If you can’t find it, email me at bdorr@sdsu.edu and I’ll send you a copy. 
 

mailto:bdorr@sdsu.edu

